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Abstract

Decimal arithmetic is the norm in human calculations,
and human-centric applications must use a decimal
floating-point arithmetic to achieve the same results.

Initial benchmarks indicate that some applications
spend 50% to 90% of their time in decimal processing,
because software decimal arithmetic suffers a 100× to
1000× performance penalty over hardware. The need
for decimal floating-point in hardware is urgent.

Existing designs, however, either fail to conform to
modern standards or are incompatible with the estab-
lished rules of decimal arithmetic. This paper intro-
duces a new approach to decimal floating-point which
not only provides the strict results which are necessary
for commercial applications but also meets the con-
straints and requirements of the IEEE 854 standard.

A hardware implementation of this arithmetic is in de-
velopment, and it is expected that this will significantly
accelerate a wide variety of applications.

1. Introduction

Algorism, the decimal system of numeration, has been
used in machines since the earliest days of computing.
Mechanical computers mirrored the manual calculations
of commerce and science, and were almost all decimal.
Many early electronic computers, such as the ENIAC [1],
also used decimal arithmetic (and sometimes even deci-
mal addressing). Nevertheless, by 1961 the majority
were binary, as shown by a survey of computer systems
in the USA [2] which reported that “131 utilize a straight
binary system internally, whereas 53 utilize the decimal
system (primarily binary coded decimal)...”. Today, few
computing systems include decimal hardware.

The use of binary arithmetic in computing became
ascendant after Burks, Goldstine, and von Neumann [3]

highlighted simplicity as the primary advantage of bina-
ry hardware (and by implication, greater reliability due

to the reduced number of components). They concluded
that for a general-purpose computer, used as a scientific
research tool, the use of binary was optimal. However,
Bucholtz [4] pointed out later that they

“did not consider the equally important data
processing applications in which but few arithmetic
steps are taken on large volumes of input-output da-
ta. If these data are expressed in a form different
from that used in the arithmetic unit, the conversion
time can be a major burden.”

and suggested that the combination of binary addressing
with decimal data arithmetic was more powerful, a con-
clusion echoed by many other authors (see, for example,
Schmid [5]). Inevitably, this implied that computers
needed at least two arithmetic units (one for binary ad-
dress calculations and the other for decimal computa-
tions) and so, in general, there was a natural tendency to
economize and simplify by providing only binary arith-
metic units.

The remainder of this section explains why decimal
arithmetic and hardware are still essential. In section
2, the variety of decimal datatypes in use is introduced,
together with a description of the arithmetic used on
these types, which increasingly needs floating-point. In
section 3, earlier designs are summarized, with a dis-
cussion of why they have proved inadequate. Section 4
introduces the new design, which allows integer, fixed-
exponent, and floating-point numbers to be manipulated
efficiently in a single decimal arithmetic unit.

1.1. The need for decimal arithmetic

Despite the widespread use of binary arithmetic, deci-
mal computation remains essential for many applica-
tions. Not only is it required whenever numbers are pre-
sented for human inspection, but it is also often a neces-
sity when fractions are involved.

Decimal fractions (rational numbers whose denomina-
tor is a power of ten) are pervasive in human endeav-
ours, yet most cannot be represented by binary fractions;



the value 0.1, for example, requires an infinitely recur-
ring binary number. If a binary approximation is used
instead of an exact decimal fraction, results can be in-
correct even if subsequent arithmetic is exact.

For example, consider a calculation involving a 5%
sales tax on an item (such as a $0.70 telephone call),
rounded to the nearest cent. Using double-precision
binary floating-point, the result of multiplying 0.70 by
1.05 is a little under 0.73499999999999999 whereas a
calculation using decimal fractions would yield exactly
0.735. The latter would be rounded up to $0.74, but us-
ing the binary fraction the result returned would be the
incorrect $0.73.

For this reason, financial calculations (or, indeed, any
calculations where the results achieved are required to
match those which might be calculated by hand), are
carried out using decimal arithmetic.

Further, numbers in commercial databases are predomi-
nately decimal. During a survey of commercial data-
bases (the survey reported by Tsang [6]) the column data-
types of databases owned by 51 major organizations
were analyzed. These databases covered a wide range of
applications, including airline systems, banking, financial
analysis, insurance, inventory control, management re-
porting, marketing services, order entry and processing,
pharmaceuticals, and retail sales. In these databases,
over 456,420 columns contained identifiably numeric da-
ta, and of these 55% were decimal (the SQL NUMERIC
type [7]). A further 43.7% were integer types which
could have been stored as decimals [8].

This extensive use of decimal data suggested that it
would be worthwhile to study how the data are used
and how decimal arithmetic should be defined. These
investigations showed that the nature of commercial
computation has changed so that decimal floating-point
arithmetic is now an advantage for many applications.

It also became apparent that the increasing use of deci-
mal floating-point, both in programming languages and
in application libraries, brought into question any
assumption that decimal arithmetic is an insignificant
part of commercial workloads.

Simple changes to existing benchmarks (which used in-
correct binary approximations for financial computa-
tions) indicated that many applications, such as a typical
Internet-based ‘warehouse’ application, may be spending
50% or more of their processing time in decimal arith-
metic. Further, a new benchmark, designed to model an
extreme case (a telephone company’s daily billing appli-
cation), shows that the decimal processing overhead
could reach over 90% [9].

These applications are severely compute-bound rather
than I/O-bound, and would clearly benefit from decim-
al floating-point hardware. Such hardware could be two

to three orders of magnitude faster than software.
The rest of this paper discusses the requirements for

decimal arithmetic and then introduces a proposed
design for floating-point decimal arithmetic. This design
is unique in that it is based on the strongly typed deci-
mal representation and arithmetic required for commer-
cial and financial applications, yet also meets the con-
straints and requirements of the IEEE 854 standard [10].
The design has been implemented as a C library in soft-
ware, and a hardware implementation is in development.

2. Decimal arithmetic in practice

In early computers decimal floating-point in hardware
was unstandardized and relatively rare. As a result,
programming languages with decimal types almost
invariably describe a decimal number as an integer
which is scaled (divided) by a power of ten (in other
words, effectively encoding decimal values as rational
numbers). The number 2.50, for example, is held as the
integer 250 with a scale of 2; the scale is therefore
simply a negative exponent.

Depending on the language, the scale might be fixed
(as in Ada fixed point [11], PL/I fixed decimal [12], or
SQL NUMERIC) or it might be variable, hence provid-
ing a simple floating-point type (as in COBOL
numerics [13], Rexx strings [14], Java BigDecimal [15], Vis-
ual Basic currency [16], and C# decimal [17]). Whether
fixed or floating, this scaled approach reflects common
ways of working with numbers on paper, especially in
school, in commerce, and in engineering, and is both
effective and convenient.

For many applications, a floating scale is especially ad-
vantageous. For example, European regulations [18,19],
dictate that exchange rates must be quoted to 6 digits in-
stead of to a particular scale. All the digits must be
present, even if some trailing fractional digits are zero.

Preserving the scale associated with a number is also
important in engineering and other applications. Here,
the original units of a measurement are often indicated
by means of the number of digits recorded, and the scale
is therefore part of the datatype of a number.

If the scale is not preserved, measurements and con-
tracts may appear to be more vague (less precise) than
intended, and information is lost. For example, the
length of a beam might be specified as 1.200 meters; if
this value is altered to 1.2 meters then a contractor could
be entitled to provide a beam that is within 5 centi-
meters of that length, rather than measured to the nearest
millimeter. Similarly, if the scale is altered by computa-
tion, it must be possible to detect that change (even if
the value of the result is exact) so that incorrect changes
to algorithms can be readily detected.



For these and other reasons, the scaled integer repre-
sentation of decimal data is pervasive. It is used in all
commercial databases (where the scale is often an attrib-
ute of a column) as well as in programming. The inte-
ger coefficient is encoded in various forms (including bi-
nary, binary coded decimal (BCD), and base 100), and
the scale is usually encoded in binary.

2.1. Arithmetic on decimal numbers

Traditionally, calculation with decimal numbers has
used exact arithmetic, where the addition of two num-
bers uses the largest scale necessary, and multiplication
results in a number whose scale is the sum of the scales
of the operands (1.25 × 3.42 gives 4.2750, for example).

However, as applications and commercial software
products have become increasingly complex, simple ra-
tional arithmetic of this kind has become inadequate.
Repeated multiplications require increasingly long scaled
integers, often dramatically slowing calculations as they
soon exceed the limits of any available binary or deci-
mal integer hardware.

Further, even financial calculations need to deal with
an increasingly wide range of values. For example,
telephone calls are now often costed in seconds rather
than minutes, with rates and taxes specified to six or
more fractional digits and applied to prices quoted in
cents. Interest rates are now commonly compounded
daily, rather than quarterly, with a similar requirement
for values which are both small and exact. And, at the
other end of the range, the Gross National Product of a
country such as the USA (in cents) or Japan (in Yen)
needs 15 digits to the left of the decimal point.

The manual tracking of scale over such wide ranges is
difficult, tedious, and very error-prone. The obvious
solution to this is to use a floating-point arithmetic.

The use of floating-point may seem to contradict the
requirements for exact results and preservation of
scales in commercial arithmetic; floating-point is per-
ceived as being approximate, and normalization loses
scale information.

However, if unnormalized floating-point is used with
sufficient precision to ensure that rounding does not
occur during simple calculations, then exact scale-pre-
serving (type-preserving) arithmetic is possible, and the
performance and other overheads of normalization are
avoided. Rounding occurs in the usual manner when di-
visions or other complex operations are carried out, or
when a specific rounding operation (for example, round-
ing to a given scale or precision) is applied.

This eclectic approach especially benefits the very
common operations of addition or subtraction of num-
bers which have the same scale. In this case, no align-

ment is necessary, so these operations continue to be
simple decimal integer addition or subtraction, with con-
sequent performance advantages. For example, 2.50 can
be stored as 250 × 10−2, allowing immediate addition to
12.25 (stored as 1225 × 10−2) without requiring shifting.
Similarly, after adding 1.23 to 1.27, no normalization
shift to remove the ‘extra’ 0 is needed.

The many advantages of scaled-integer decimal float-
ing-point arithmetic have led to its being widely
adopted in programming languages (including COBOL,
Basic, Rexx, Java, and C#) and in many other software
libraries. However, these implementations have not in
the past provided the full floating-point arithmetic facili-
ties which are now the norm in binary floating-point li-
braries and hardware.

To see how these can be supported too, it is helpful to
consider some earlier decimal floating-point designs.

3. Previous decimal floating-point designs

Decimal floating-point (DFP) arithmetics have been
proposed, and often implemented, for both hardware
and software. A particular dichotomy of these designs is
the manner by which the coefficient (sometimes called
the mantissa or significand) is represented. Designs
derived from scaled arithmetic use an integer for this,
whereas those built for mathematical or scientific use
generally use a normalized fraction.

Both of these approaches appear in the following
designs. (Here, the notation {p,e} gives the maximum
precision and exponent range where known.)

• In 1955, Perkins [20] described the EASIAC, a wholly
DFP virtual computer implemented on the University
of Michigan’s MIDAC machine {7+, ±20}. The form
of the coefficient seems to have been a fraction.

• The Gamma 60 computer [21], first shipped by Bull in
1960, had a DFP calculation unit with fractional coef-
ficients {11–19, ±40}.

• In 1962, Jones and Wymore [22] gave details of the
normalized variable-precision DFP Feature on the
IBM Type 1620 computer {100, ±99}.

• The Burroughs B5500 computer [23], shipped in 1964,
used an integer or fixed-point coefficient {21–22,
±63}. Neely [24] noted later that this “permits mixed
integer and real arithmetic without type conversion”.

• Mazor, in 1966 [25], designed the Fairchild Symbol II
DFP unit. This used normalized variable-precision
and most-significant-digit–first processing {99, ±99?}.

• In 1969, Duke [26] disclosed a hardware design using
unnormalized binary integers of unspecified length for
both coefficient and exponent.

• Also in 1969, Taub, Owen, and Day [27] built the IBM



Schools computer; this experimental teaching comp-
uter used a scaled integer format {6, −6 to 0}.

• Fenwick, in 1972 [28], described a representation simi-
lar to Duke’s, and highlighted the advantages of un-
normalized DFP.

• By the early 1970s, the mathematical requirements for
decimal floating-point were becoming understood.
Ris, working with Gustavson, Kahan, and others, pro-
posed a unified DFP architecture [29] which had many
of the features of the later binary floating-point stand-
ard. It was a normalized DFP with a fractional
coefficient, three directed rounding modes, and a trap
mechanism. Three precisions were defined, up to
{31, ±9999}. Ris’s representations were the first to
use the encoding invented by Chen and Ho [30], which
allowed the 31-digit DFP numbers, with 4-digit expo-
nent, to be represented in 128 bits.

• In 1975, Keir [31] described the advantages of an un-
normalized integer coefficient, noting that it is “ex-
actly as accurate as normalized arithmetic”.

• Hull, in 1978 [32], proposed a DFP with controlled
(variable) precision and a fractional coefficient. This
was later refined and implemented in the controlled-
precision CADAC arithmetic unit by Cohen, Hull,
and Hamacher [33,34].

• In 1979, Johannes, Pegden, and Petry [35] discussed
the problems of efficient decimal shifts in a two-bina-
ry-integer DFP representation (problems which were
revisited by Bohlender in 1991 [36]).

• In 1981, Cowlishaw added arbitrary-precision DFP
{109, ±109;} to the Rexx programming language [37];
this was unnormalized. Later implementations of the
Rexx family of languages have used a variety of
representations, all with integer coefficients.

• In 1982, Sacks-Davis [38] showed that the advantage
of redundant number representations (addition time is
independent of operand length) can be applied to
DFP, though no implementation of this is known.

• Also in the early 1980s, the standardization of binary
floating-point arithmetic was completed, with the pub-
lication of the IEEE 754 standard [39]. A later
generalization of that standard, IEEE 854, extended
the principles to DFP, as explained by Cody et al [40].

These standards formalized earlier work, recorded
by Kahan [41], and, unlike earlier designs using inte-
ger coefficients, prescribe gradual underflow as well
as infinities and NaNs.

Compliance with IEEE 854 does not require either
normalization or fractional coefficients. Values may
be encoded redundantly, as in the Burroughs B5500,
and hence may use integer coefficients.

IEEE 854 was first implemented in the HP 71B cal-
culator [42,43]; this held numbers as {12, ±499}
fractions, expanded to {15, ±49999} for calculations.

• In 1987, Bohlender and Teufel [44] described a bit-
slice DFP unit built for PASCAL-SC (a version of
Pascal designed for scientific computation). This used
a BCD fractional coefficient {13, −98 to +100}.

• Circa 1990, Visual Basic added a floating-point
currency class with a 64-bit binary integer coefficient.
This was later extended to 96 bits and formed the
basis of the C# decimal type {28–29, −28 to 0}.

• In 1996, Java added the exact arithmetic BigDecimal
class. This is arbitrary-precision, with a binary inte-
ger coefficient.

• Finally, hand calculators almost all use decimal float-
ing-point arithmetic. For example, the Texas Instru-
ments TI-89 [45,46] uses a BCD fractional coefficient
{14, ±999}, Hewlett Packard calculators continue to
use a 12-digit decimal format, and Casio calculators
have a 15-digit decimal internal format.

Looking back at these designs, it would seem that
those which assumed a fractional coefficient were de-
signed with mathematical rather than commercial uses in
mind. These did not meet the strong type requirements
of scaled decimal arithmetic in commercial applications,
and for other applications they were eclipsed by binary
floating-point, which provides better performance and
accuracy for a given investment in hardware. (The nota-
ble exception to this generalization is the hand-held cal-
culator, where performance is rarely an issue and deci-
mal floating-point is common.)

Those designs which use integer coefficients, however,
have survived, and are widely used in software, prob-
ably due to their affinity with decimal data storage and
exact rational arithmetic. These designs tend to follow
the traditional rules of decimal arithmetic, and although
this is in effect floating-point, little attempt was made to
incorporate the improvements and advantages of the
floating-point system defined in IEEE 854 until recently.

At first reading it may seem that the rules of IEEE
854, which appear to assume a fractional coefficient,
must be incompatible with unnormalized scaled-integer
arithmetic. However, a fractional coefficient is not nec-
essary to meet the requirements of IEEE 854. All the
mathematical constraints of the standard can be met
when using an integer coefficient; indeed, it turns out
that subnormal values are simpler to handle in this form.

Normalization, too, is not required by IEEE 854. It
does offer an advantage in binary floating-point, where
in effect it is a compression scheme that increases the
length of the coefficient by one bit. However, in deci-
mal arithmetic (where in any case only one value in ten



could be implied in the same way) normalized arithmetic
is harmful, because it precludes the exact and strongly
typed arithmetic with scale preservation which is essen-
tial for many applications.

With these observations, it becomes possible to extend
the relatively simple software DFP in common use to-
day to form a richer arithmetic which not only meets the
commercial and financial arithmetic requirements but
also has the advantages of the IEEE 854 design: a for-
mally closed arithmetic with gradual underflow and de-
fined exception handling.

4. The decimal arithmetic design

There is insufficient space here to include every detail
of the decimal floating-point design; this is available at
http://www2.hursley.ibm.com/decimal.
Also, the arithmetic is independent of specific concrete
representations, so these are not discussed here.

In summary, the core of the design is the abstract mod-
el of finite numbers. In order to support the required
exact arithmetic on decimal fractions, these comprise an
integer coefficient together with a conventional sign and
signed integer exponent (the exponent is the negative of
the scale used in scaled-integer designs). The numerical
value of a number is given by  (−1) sign × coefficient ×
10 exponent.

It is important to note that even though the concept of
scale is preserved in numbers (the numbers are essen-
tially two-dimensional), they are not the significant num-
bers deprecated by Delury [47]. Each number has an ex-
act value and, in addition, an exact exponent which indi-
cates its type; the number may be thought of as the sum
of an integral number of discrete values, each of magni-
tude 10 exponent. The arithmetic on these numbers is exact
(unless rounding to a given precision is necessary) and
is in no sense a ‘significance’ arithmetic.

Given the parameters just described, much of the arith-
metic is obvious from either the rules of mathematics
or from the requirements of IEEE 854 (the latter, for
example, define the processing of NaNs, infinities, and
subnormal values). The remainder of this section ex-
plains some less obvious areas.

4.1. Context

In this design, the concept of a context for operations
is explicit. This corresponds to the concept of a ‘float-
ing-point control register’ in hardware or a context ob-
ject instance in software.

This context includes the flags and trap-enablers from
IEEE 854 §7 and the rounding modes from §4. There
is also an extra rounding mode and a precision setting.

4.1.1. Commercial rounding. The extra rounding mode
is called round-half-up, which is a requirement for many
financial calculations (especially for tax purposes and in
Europe). In this mode, if the digits discarded during
rounding represent greater than or equal to half (0.5) of
the value of a one in the next left position then the re-
sult should be rounded up. Otherwise the discarded dig-
its are ignored. This is in contrast to round-half-even,
the default IEEE 854 rounding mode, where if the dis-
carded digits are exactly half of the next digit then the
least significant digit of the result will be even.

It is also recommended that implementations offer two
further rounding modes: round-half-down (where a 0.5
case is rounded down) and round-up (round away from
zero). The rounding modes in IEEE 854 together with
these three are the same set as those available in Java.

4.1.2. Precision. The working precision setting in the
context is a positive integer which sets the maximum
number of significant digits that can result from an arith-
metic operation. It can be set to any value up to the
maximum length of the coefficient, and lets the
programmer choose the appropriate working precision.

In the case of software (which may well support un-
limited precision), this lets the programmer set the pre-
cision and hence limit computation costs. For example,
if a daily interest rate multiplier, R, is 1.000171
(0.0171%, or roughly 6.4% per annum), then the exact
calculation of the yearly rate in a non-leap year is R365.
To calculate this to give an exact result needs 2191 dig-
its, whereas a much shorter result which is correct to
within one unit in the last place (ulp) will almost always
be sufficient and could be calculated very much faster.

In the case of hardware, precision control has little
effect on performance, but allows the hardware to be
used for calculations of a different precision from the
available ‘natural’ register size. For example, one pro-
posal [48] for a concrete representation suggests a maxi-
mum coefficient length of 33 digits; this would be
unsuitable for implementing the new COBOL standard
(which specifies 32-digit intermediate results) if preci-
sion control in some form were not available.

Note that to conform to IEEE 854 §3.1 the working
precision should not be set to less than 6.

4.2. Arithmetic rules

The rules for arithmetic are the traditional exact deci-
mal rational arithmetic implemented in the languages
and databases described earlier, subject to the context
used for the operation. These rules can all be described
in terms of primitive integer operations, and are defined
in such a way that integer arithmetic is itself a subset of



the full floating-point arithmetic. The lack of automatic
normalization is essential for this to be the case.

It is the latter aspect of the design which permits both
integer and floating-point arithmetic to be carried out
in the same processing unit, with obvious economies in
either a hardware or a software implementation.

The ability to handle integers as easily as fractions
avoids conversions (such as when multiplying a cost
by a number of units) and permits the scale (type) of
numbers to be preserved when necessary. Also, since
the coefficient is a ‘right-aligned’ integer, conversions to
and from other integer representations (such as BCD or
binary) are simplified.

To achieve the necessary results, every operation is
carried out as though an infinitely precise mathematical
result is first computed, using integer arithmetic on the
coefficient where possible. This intermediate result is
then coerced to the precision specified in the context, if
necessary, using the rounding algorithm also specified in
the context. Rounding, the processing of overflow and
underflow conditions, and the production of subnormal
results are defined in IEEE 854.

The following subsections describe the required opera-
tors (including some not defined in IEEE 854), and de-
tail the rules by which their initial result (before any
rounding) is calculated.

The notation {sign, coefficient, exponent} is used here
for the numbers in examples. All three parameters are
integers, with the third being a signed integer.

4.2.1. Addition and subtraction. If the exponents of
the operands differ, then their coefficients are first
aligned; the operand with the larger exponent has its
original coefficient multiplied by 10n, where n is the
absolute difference between the exponents.

Integer addition or subtraction of the coefficients, tak-
ing signs into account, then gives the exact result coef-
ficient. The result exponent is the minimum of the
exponents of the operands.

For example, {0, 123, −1} + {0, 127, −1} gives {0,
250, −1}, as does {0, 50, −1} + {0, 2, +1}.

Note that in the common case where no alignment or
rounding of the result is necessary, the calculations of
coefficient and exponent are independent.

4.2.2. Multiplication. Multiplication is the simplest op-
eration to describe; the coefficients of the operands are
multiplied together to give the exact result coefficient,
and the exponents are added together to give the result
exponent.

For example, {0, 25, 3} × {0, 2, 1} gives {0, 50, 4}.
Again, the calculations of coefficient and exponent are

independent unless rounding is necessary.

4.2.3. Division. The rules for division are more com-
plex, and some languages normalize all division results.
This design, however, uses exact integer division where
possible, as in C#, Visual Basic, and Java. Here, a num-
ber such as {0, 240, −2} when divided by two becomes
{0, 120, −2} (not {0, 12, −1}).

The precision of the result will be no more than that
necessary for the exact result of division of the integer
coefficient. For example, if the working precision is 9
then {0, 241, −2} ÷ 2 gives {0, 1205, −3} and {0, 241,
−2} ÷ 3 gives, after rounding, {0, 803333333, −9}.

This approach gives integer or same-scale results
where possible, while allowing post-operation normal-
ization for languages or applications which require it.

4.2.4. Comparison. A comparison compares the numer-
ical values of the operands, and therefore does not
distinguish between redundant encodings. For example,
{1, 1200, −2} compares equal to {1, 12, 0}. The actual
values of the coefficient or exponent can be determined
by conversion to a string (or by some unspecified opera-
tion). For type checking, it is useful to provide a means
for extracting the exponent.

4.2.5. Conversions. Conversions between the abstract
form of decimal numbers and strings are more
straightforward than with binary floating-point, as con-
versions can be exact in both directions.

In particular, a conversion from a number to a string
and back to a number can be guaranteed to reproduce
the original sign, coefficient, and exponent.

Note that (unless deliberately rounded) the length of
the coefficient, and hence the exponent, of a number is
preserved on conversion from a string to a number and
vice versa. For example, the five-character string
"1.200" will be converted to the number {0, 1200,
−3}, not {0, 12, −1}.

One consequence of this is that when a number is dis-
played using the defined conversion there is no hidden
information; “what you see is exactly what you have”.
Further, the defined conversion string is in fact a valid
and complete concrete representation for decimal num-
bers in the arithmetic; it could be used directly in an in-
terpreted scripting language, for example.

4.2.6. Other operations. The arithmetic defines a num-
ber of operations in addition to those already described.
abs, max, min, remainder-near, round-to-integer, and
square-root are the usual operations as defined in IEEE
854. Similarly, minus and plus are defined in order to
simplify the mapping of the prefix − and prefix + opera-
tors present in most languages.

divide-integer and remainder are operators which



provide the truncating remainder used for integers (and
for floating-point in Java, Rexx, and other languages). If
the operands x and y are given to the divide-integer and
remainder operations, resulting in i and r respectively,
then the identity x = (i × y) + r holds.

An important operator, rescale, sets the exponent of a
number and adjusts its coefficient (with rounding, if
necessary) to maintain its value. For example, rescaling
the number {0, 1234567, −4} so its exponent is −2 gives
{0, 12346, −2}. This example is the familiar, and very
heavily used, ‘round to cents’ operation, although rescale
has many other uses (round-to-integer is a special case
of rescale, for example).

Finally, the normalize operator is provided for reduc-
ing a number to its most succinct form. Unlike the bi-
nary equivalent, this normalization removes trailing
rather than leading zeros from the coefficient; this means
that it generalizes to arbitrary-precision implementations.

5. Conclusion

The new data type described here combines the advan-
tages of algorism and modern floating-point arithmetic.
The integer coefficient means that conversions to and
from fixed-point data and character representations are
fast and efficient. The lack of normalization allows
strongly typed decimal numbers and improves the per-
formance of the most common operations and con-
versions. The addition of the IEEE 854 subnormal and
special values and other features means that full
floating-point facilities are available on decimal numbers
without costly and difficult conversions to and from
binary floating-point. These performance and functional
advantages are complemented by easier programming
and the reduced risk of error due to the automation of
scaling and other operations.
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